Water for BJCP Judge Hopefuls

Mike Ontolchik Market Garden Brewery February, 2014

Overview

- Why Water?
- Alkalinity
- Chlorine
- Water lons
- Classic Brewing Waters
- Water Adjustment

Why Water?

- Beer is 85 90% water
- Not all water is the same
- Water has dissolved minerals and ions
 - Affect flavor
 - Affect pH
 - Essential for yeast health
- Water is geographically different
- Classic beer styles were influenced by the local water

Alkalinity

- Alkalinity is the measurement of buffering ability water will have against acids to lower its pH
- Alkalinity relates to pH, but it is not a measurement of it.
- Water Alkalinity is measured as Bicarbonate (HCO3) or Calcium Carbonate (CaCO3)
- Residual Alkalinity (RA) is the measurement of the mash water (with malt and brewing additions) to buffer its pH against acids
- Higher RA is typically better for darker beers, lower RA for lighter beers
- Residual Alkalinity can be reduced
 - Adding hardness (Gypsum, Epsom Salt, Calcium Chloride)
 - Lowering Alkalinity through adding acid

Chlorine

- Without treatment, chlorine can add polyphenols (plastic flavors) that you don't want in your beer
- Brewers should remove chlorine from their brewing water
- Higher levels in municipal water in Summer
- Cleveland Water Department uses Chlorine and not Chloramines
- Chlorine is more volatile than chloramines
 - Easier to remove
 - Time chlorine off gasses in an open container over time
 - Pre-Boiling off gasses faster
 - Potassium Metabisulphite (Campden Tablets)
 - Activated-Charcoal filter
 - Reverse Osmosis filter

Brewing Ions

Mineral / Ion	Importance	Mike's Water	Recommended
Calcium (Ca)	Yeast Health, Mash pH, Clarity	33.3 ppm	50 – 150 ppm
Magnesium (Mg)	Yeast Health	8.8 ppm	10 – 30 ppm
Sodium (Na)	Beer Flavor, less is better	13 ppm	0 – 150 ppm
Chloride (CI)	Enhances Malt Flavor	22.4 ppm	0 – 250 ppm
Sulfate (SO ₄)	Enhances Hop Flavor	28 ppm	50 – 350 ppm
Bicarbonate (HCO ₃)	Buffers water pH	99.3 ppm	
Alkalinity (CaCO ₃)	Buffers water pH		

Classic Brewing Waters

Mineral	Ca	Mg	Na	SO ₄	HCO ₃	CI	Styles
Pilzen	7	2	2	5	15	5	Pilsner
Dortmund	225	40	60	120	180	60	Dortmunder
Munich	75	18	2	10	150	2	Dunkel, Bock
Vienna	200	60	8	125	120	12	Vienna
Burton	275	40	25	450	260	35	Pale Ale, English IPA
Dublin	120	5	12	55	125	20	Dry Stout
Edinburgh	120	25	55	140	225	65	Scottish Ales
London	90	5	15	40	125	20	Porter, Sweet Stout
Cleveland	31	9	11	44	98	20	?
San Diego	43	18	83	160	85	12	American IPA

Water Adjustment

Addition	pH Adjustment	Flavor Adjustment
Gypsum (CaSO4)	Lowers (RA)	Enhances Hoppiness
Calcium Chloride (CaCl2)	Lowers (RA)	Enhances Maltiness
Epsom Salt (MgSO4)	Lowers (RA)	Enhances Hoppiness
Chalk (CaSO4)	Raises (RA)	May use to counteract heavy roast malt, difficult to dissolve
Slaked Lime (CaOH2)*	Raises (RA)	
Baking Soda (NaHCO3)*	Raises (RA)	
Acidulated Malt	Lowers (RA)	Won't affect flavor below 3% of grist
Food Grade Acids (Lactic, Citric, etc.)	Lowers (A)	

Water Adjustment Example

- Let's make a Pale Ale Mash: 9lb 2 Row, 1 lb
 Crystal 20 for a 5 gallon batch
- Cleveland pH is 8 with HCO₃ of 98 ppm
- 3 gal Water + Malt brings mash pH at room temperature to 5.7 pH which is okay range
- Add 3 gm Gypsum, 1 gm Calcium Chloride, 1 gm Epsom Salt to bring mash pH to 5.63: Better
- Add 1 mL of 88% content Lactic Acid to lower mash pH to 5.54: Ideal

Conclusion

- Beer is mostly water
- Brewing water is not the same everywhere
- Classic beer styles influenced by local water sources
- Water Alkalinity buffers pH against mash and water adjustments
- For beer flavor and yeast health, chlorine and chloramines should be removed
- Water can be and is adjusted to fit beer style